

Year 2	
Teacher A	Teacher B
Regression and Correlation	Moments
Change of variable	Resultant Moments
Correlation coefficients	Equilibrium of a Uniform Rod
Statistical hypothesis testing for zero correlation	Centres of Mass
Series and Sequences	Tilting
Arithmetic and Geometric sequences	Trigonometry
Arithmetic Series	Radians
Geometric Series	Small angles and Trigonometry
Sum to Infinity of a GS	Secant, cosecant and cotangent
Sigma notation	Trigonometrical identities and inverses.
Recurrence and iterations	The Addition Formulae
Modelling with series	The Double angle and Half angle formulae
Parametric Equations	Solving Trigonometrical equations
Converting between parametric and Cartesian forms	$R \cos (x \pm \alpha)$ or $R \sin (x \pm \alpha)$
Curve sketching and Intersections	Proving trigonometrical Identities
Modelling with Parametric Equations	Modelling with Trigonometry
Probability	Forces at any angle
Using set notation for probability/ Conditional probability	Resolving forces
Conditional Probability and Venn Diagrams	Inclined Planes
The Probability Formulae	Friction forces
Tree Diagrams	Numerical Methods
Questioning assumptions in probability	Location of roots
Differentiation	Solving by iterative methods
Differentiating $\sin \times$ and $\cos x$ from first principles	Cobweb Diagrams
Differentiating exponentials	Newton-Raphson method
Differentiating logarithms	The Normal Distribution
The Chain Rule	Understanding the Normal distribution
The Product Rule	Finding probabilities from the Normal Distribution
The Quotient Rule	The Inverse Normal Function
Differentiation of Trig functions	The Standardized Normal Function
Differentiation of Parametric Functions	Finding the mean and standard deviation.
Implicit Differentiation	Applications of Kinematics - Projectiles
Rates of change problems	Horizontal Projection
Integration 1	Vertical Projection
Integrating Standard Functions	Projection at any angle
Integrating Standard Functions II	Projectile Motion Formulae
Integrating $\mathrm{f}(\mathrm{ax}+\mathrm{b})$	Applications of Forces
Using the reverse of the Chain Rule	Statics of a Particle
Using trigonometric identities to manipulate integrals	Modelling with Statics
The Normal Distribution	Friction and statics
The Binomial Distribution	Statics of Rigid Bodies
Applying Continuity Correction when Approximating Binomial -	Dynamics and Inclined Planes
Approximating Binomial with the Normal Distribution.	Further Kinematics
Integration 2	Vectors in Kinematics
Integration by Substitution	Vectors and Projectiles
Integration by parts	Variable acceleration in 1D
Use of partial fractions	Differentiating Vectors
Area under a graph using limits of a sum	Integrating Vectors
$\frac{\text { Areas under Graphs - working Parametrically. }}{\text { The trapezium rule }}$	The Normal Distribution
Differential equations	Hypothesis testing with the mean
Modelling with Differential Equations	Mixed Hypothesis testing
Vectors (3D)	
3D Coordinates	
Vectors in 3D	
Applications to Mechanics	

